主 办:能源与资源工程系
报告人:Professor Yu-Shu Wu Energy Modeling Group (EMG), Department of Petroleum Engineering Colorado School of Mines
时 间:6月5日(周一)上午10:10
地 点:三教506室
主持人:邸 元
报告内容摘要:
Tight oil reservoirs have been receiving great attentions due to their large reserves and contributions to total oil production. However, fluid flow behavior in tight oil reservoirs is not still well studied or understood. Specific characteristics of tight oil reservoirs, such as nano-pore scale and strong stress-dependency, result in the complex subsurface fluid flow behaviors. The recent field observations and laboratory experiments indicate that effects of pore confinement and rock compaction have non-negligible impacts on the production performance of tight oil reservoirs. On the other hand, there are many approximations or limitations to model tight oil reservoirs under effects of pore confinement and rock compaction with current reservoir simulation techniques. In this talk, we discuss a compositional flow model, coupled with geomechanics with capabilities to describe complex fluid flow behavior in multiphase multi-component tight oil reservoirs. In the model, the pore confinement effect is represented by the effect of capillary pressure on vapor-liquid equilibrium (VLE) and modeled with the VLE calculation method. The fully coupled flow-geomechanical model is developed from the linear elastic theory for the poro-elastic system. The rock compaction is then correlated with stress-dependent rock properties, especially, stress-dependent permeability. The numerical studies demonstrate the effect of capillary pressure on VLE, and further on production performance in addition to the effect of rock deformation from substantial decrease in reservoir pore pressure or large increase in effective stress. The reduction of pore radius due to geomechanical effect could increase the capillary pressure, which enlarges the influence of capillarity on VLE and further suppresses bubble point pressure, influencing multiphase fluid flow as well as effective stress through the flow-stress coupling process.
报告人简介:
Yu-Shu Wu is a professor, Foundation CMG Reservoir Modeling Chair, and director of Energy Modeling Group (EMG) research center in the Petroleum Engineering Department at the Colorado School of Mines (CSM), USA. He is a fellow of the Geological Society of America. At CSM, he teaches and carries out research in reservoir engineering, multiphase fluid and heat flow, geomechanics, unconventional oil and gas reservoir dynamics, CO2 geosequestration and EOR, geothermal engineering, and numerical reservoir simulation. He leads the EMG in its research effort in (1) flow dynamics in unconventional oil and gas reservoirs; (2) coupled processes of multiphase fluid and heat flow, geomechanics, and chemical transport in porous and fractured media; (3) CO2 sequestration and EOR application; (4) improved formation stimulation/cryogenic fracturing technologies; and (5) advanced reservoir-simulation technologies. Previously, he was a staff scientist with the Earth Sciences Division of Lawrence Berkeley National Lab oratory for 14 years (1995–2008). During his career, he has authored or coauthored 120+ peer-reviewed journal papers and 17 peer-reviewed books/chapters as well as 62 SPE papers.
欢迎广大老师和同学们参加!